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The Feynman Nonrelativistic Chessboard 
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The sum-over-paths prescription of the Feynman chessboard model is adapted 
directly to the nonrelativistic case. The simple binary geometry is sufficient to 
obtain the usual Feynman propagator for the free particle in the continuum limit. 

1. INTRODUCTION 

The relativistic chessboard (Feynman and Hibbs, 1965; Gersch, 1981; 
Jacobson and Schulman, 1984; Ord, 1992) was an attempt by Feynman to 
generalize his space-time approach to include special relativity. The attempt 
was incomplete, although some recent work suggests that the chessboard 
model may prove more fundamental than the better known nonrelativistic 
path integral (Ord, 1992, 1993; Ord and McKeon, 1993). 

In this note the "chessboard prescription" for the sum over paths is 
translated into the nonrelativistic domain and the nonrelativistic propagator 
obtained as a result. 

2. THE CHESSBOARD MODEL 

In the Feynman chessboard model a particle is constrained to move on 
a space-time lattice with spacings 8 and e in x and t, respectively. At each 
step in discrete time the particle moves either one lattice spacing to the left 
or right. The kernel K~(b, a) for a particle to propagate from position a at 
time t~ to position b at time tb is given by 

K~(b, a) : ~ N(R)(iem) R (1) 
R 

where the sum is over all paths partioned according to the number of corners 
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(direction changes) R. Here N(R) is the number of paths with R comers 
connecting a and b. 

In the chessboard model, the lattice is refined in such a way that 

lim -~ = c (2) 
e-->O e 
~-->o 

As shown by Jacobson and Schulman (1984), this limit results in paths 
which are ultimately piecewise linear with an expected time of l/m between 
direction changes. 

To adapt this prescription to the nonrelativistic case we have to remove 
the relativistic scaling (2) and replace it with diffusive scaling, namely 

~2 1 
lim - (h = 1) (3) 
~ 0  2e 2m 
~---~0 

This scaling removes the mean free time llm between collisions and builds 
in the uncertainty principle on all scales. 

The nonrelativistic prescription is then 

K~(b, a) = ~ N(R)(i)R2 -#2~ (4) 
R 

where N(R) is the number of R-cornered paths between a and b. Here t = 
tb -- ta and we have ~2/2e = l/(2m). One further restriction we shall require 
is that lattice refinements be carried out in such a way that N = t/e = 0 
(mod 8). The reason for this will soon be apparent. 

As in the relativistic case the propagator (4) is a 2 • 2 matrix with 
elements indexed by the arrival and departure directions on the lattice. One 
way to obtain K,(b, a) is to consider the difference equation that must be 
satisfied by the two-component amplitudes of the system. If qb+(x, t) is the 
amplitude for the particle to be at x = m~ at time t = Are moving in the 
+ ( - )  direction, then we have 

~b+(m~, (U + 1)e) = (~b+((m - 1)~, Are) + i+_(m~, Ne))/,J~ 

d~_(m~, (N + 1)e) = (i++((mS, We) + d~_((m + 1)~, Ne))/,f2 (5) 

Now write 

-kc~ 

dO=(p, Ne) = ~ e-ipm~++(m~, Ne)8 (6) 

Multiply the left-hand side of (5) by e -ipm~ and sum to get 
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dp+(p, (N + 1)~)~ 1 (e -p~ i 
qb_(p,(N § 1)~)J ~ o = eip~j~+_(p,N,))) 

where T is the transfer matrix 

T =  1 (e~ ~ i )  
eiP~ 

This has eigenvalues 

(7) 

(8) 

cos p~ + i (3 - cos 2p8) 1/2 

= e -+~/4 1 ___ + 0(8 4) (9) 

In the continuum limit we shall want to find )t~, where N = tie = t/mB 2, 
assuming that N is O(mod 8). In this limit 

~ + ---ff e+-ip2t/2m 

and the kernel in (7) becomes 

F c~ i sin(p2tl2m)] 
k(p, t) = ]i sin(p2t/2m) c~ 2t/2m) I (10) 

If we diagonalize (10), we get 

K(p,t)=[eip~/2m 0 ] 
e_ipZt/Zm (11) 

and it is clear that each component of the amplitude associated with (11) 
satisfies a Schr6dinger equation. The two-component form of (11) suggests 
that the amplitudes are the one-dimensional analogs of spinors. 

There are a few things to note about the above result. 
(a) The form of the continuum propagator is a result of the simple binary 

geometry of the paths. At each lattice refinement, all paths have exactly two 
choices of direction at each step. This can be thought of as an inheritance 
from the relativistic case. There it was necessary to ensure that the eigenstates 
of the velocity operator had eigenvalues +c. Here it appears necessary (or 
at least sufficient) to provide paths with sufficient direction correlations that 
period-four correlations (i4 = 1) produce the Feynman propagator. 
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(b) The configuration space path integral associated with this formulation 
is, in a sense, slightly more honest than its predecessors. In this case we have 
started off on a lattice with a genuine lattice propagator [equation (4)] and 
proceeded to obtain the resulting continuum object. Typical derivations of  
the path integral (Feynman and Hibbs, 1965) start with a continuum short- 
time propagator and proceed to produce the long-time propagator by placing 
the short-time propagator on a lattice and taking a limit. This procedure clearly 
works, although, as will be shown elsewhere, assumption of a continuum 
propagator at the outset constitutes a projection from an underlying lattice 
model. This projection hides some interesting features of  the transition from 
lattice to continuum. 
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